若y=f(u)y=f(u)y=f(u),u=g(x)u=g(x)u=g(x),则dy=f′(u)du=f′(u)⋅g′(x)dxdy=f'(u)du=f'(u)\cdot g'(x)dxdy=f′(u)du=f′(u)⋅g′(x)dx
形式不变性指若y=f(u)y=f(u)y=f(u),则无论uuu是自变量还是中间变量,对yyy微分保持形式不变,dy=f′(u)dudy=f'(u)dudy=f′(u)du
y=cosln(2x+1)y=\cos\ln(2x+1)y=cosln(2x+1),求dydydy.
解:dy=−sinln(2x+1)⋅12x+1⋅2dx=−2sinln(2x+1)2x+1dxdy=-\sin\ln(2x+1)\cdot\dfrac{1}{2x+1}\cdot 2dx=-\dfrac{2\sin\ln(2x+1)}{2x+1}dxdy=−sinln(2x+1)⋅2x+11⋅2dx=−2x+12sinln(2x+1)dx
设f(x)f(x)f(x)可导,y=f(sinx)+ef(x)y=f(\sin x)+e^{f(x)}y=f(sinx)+ef(x),求dydydy.
解:dy=[f′(sinx)⋅cosx+ef(x)⋅f′(x)]dxdy=[f'(\sin x)\cdot \cos x+e^{f(x)}\cdot f'(x)]dxdy=[f′(sinx)⋅cosx+ef(x)⋅f′(x)]dx
一阶微分形式不变性,与复合函数求导有一定联系,以上练习也可以当作复合函数求导的练习。