647.回文子串
516.最长回文子序列
动态规划总结
语言:Java
链接:https://leetcode.cn/problems/palindromic-substrings/
class Solution {public int countSubstrings(String s) {int[][] dp = new int[s.length()][s.length()];//dp[i][j]: 从i~j的子串是否为回文子串int res = 0;for(int i = s.length() - 1; i >= 0; i--){for(int j = i; j < s.length(); j++){if(s.charAt(i) == s.charAt(j)){if(i == j){dp[i][j] = 1;}else if(Math.abs(j - i) == 1){dp[i][j] = 1;}else if(j - i > 1){dp[i][j] = dp[i + 1][j - 1];}}res += dp[i][j];}}return res;}
};/*a b b a ca 1 0 0 1 0b 1 1 0 0b 1 0 0a 1 0c 1*/
链接:https://leetcode.cn/problems/longest-palindromic-subsequence/
代码随想录
class Solution {public int longestPalindromeSubseq(String s) {int[][] dp = new int[s.length()][s.length()];//i~j位的最长子串长度for(int i = 0; i < s.length(); i++){dp[i][i] = 1;}for(int i = s.length() - 1; i >= 0; i--){for(int j = i + 1; j < s.length(); j++){//如果相等,就说明i位和j位都可以加入到当前最长回文子序列中if(s.charAt(i) == s.charAt(j)){dp[i][j] = dp[i + 1][j - 1] + 2;}//如果不相等,就寻找加入i位或j位后最长回文子序列更长的else{dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);}}}return dp[0][s.length() - 1];}
}
/*b b b a bb 1 2 3 3 4b 1 2 2 3b 1 1 2a 1 1b 1*/
/*c b b dc 1 1 2 2b 1 2 2b 1 1d 1*/