数学因式分解法解方程详细过程
创始人
2025-06-19 09:11:59
数学因式分解法解方程详细过程
方程可谓是初中数学"数与代数"的核心内容,解方程又是其重要内容之一.它是刻画现实世界的一种重要模型,蕴含着化归和模型的思想.它们对学习和应用数学知识具有普遍价值.一元二次方程是方程中的一种重要模型,对一元二次方程的解法的研究,也是笔者一直思考的问题.

[(3x-1)+13][(3x-1)-13]=0

(3x+12)(3x-14)=0

x=-4或x=14/3

[2(x-3)+5(x-2)][2(x-3)-5(x-2)]=0

(7x-16)(3x-4)=0

x=6/7或x=4/3

(x-3)[(x-3)+4x]=0

(x-3)(5x-3)=0

x=3或x=3/5

[(2x-1)-2]^2=0

(2x-3)^2=0

2x-3=0

x=3/2

因式分解

 方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。
用因式分解法解一元二次方程的一般步骤:
一,将方程右边化为( 0) ,
二,方程左边分解为(两个 )因式的乘积,
三,令每个一次式分别为( 0)得到两个一元一次方程,
四,两个一元一次方程的解,就是所求一元二次方程的解。
举例:
1).9(2x+3)²-(2x-5)²=0
∴[3(2x+3)]²-(2x-5)²=0
∴(6x+9+2x-5)(6x+9-2x+5)=0
即(8x+4)(4x+14)=0
解得:x=-1/2或x=-7/2
∴x₁=-1/2,x₂=-7/2
2).14(4-x)²+9(x-4)-65=0
∵14(x-4)²+9(x-4)-65=0
∴[7(x-4)-13]*[2(x-4)+5]=0
∴(7x-41)(2x-3)=0
解得x=41/7或x=3/2
∴x₁=41/7,x₂=3/2
3.x²-2x+2a-a²=0
(x²-a²)-2(x-a)=0
(x-a)(x+a-2)=0
解得:x=a或x=2-a
∴x₁=a,x₂=2-a

相关内容

热门资讯

原创 树... 去印度打卡?别只顾着追孟买的繁华、新德里的庄严——有座老城藏着“意外惊喜”:飘着豆浆香气的中式早餐摊...
恩施夜晚去哪玩?资深本地导游带... 恩施夜晚去哪玩?资深本地导游带你解锁女儿城之外的绝美夜游地,附独家行程建议! 很多游客朋友都以为,恩...
雪后的河南,有多美? 大雪落中原河南瞬间切换成“冰雪奇境”模式青山褪尽苍翠,化作水墨雪山云雾在积雪的峰峦间流转古建披上银装...
原创 比... 你家里,一定有这样东西。 它不贵,很常见。但老一辈人,叫它“水中人参”。 它就是芡实。 一颗颗,圆溜...