如何求极限
limx→∞[∫01(1+sinπ2t)ndt]1n\lim_{x \to \infty} \left [ \int_{0}^{1} \left ( 1+ \sin \frac{\pi }{2}t \right )^{n} \mathrm{d}t \right ] ^ \frac{1}{n} x→∞lim[∫01(1+sin2πt)ndt]n1
根据极限与积分的交换规则,我们可以将极限符号移入积分符号中,得到:
limn→∞[∫01(1+sinπ2t)ndt]1n=limn→∞[∫01(1+sinπ2t)ndt]1n=exp(limn→∞ln(∫01(1+sinπ2t)ndt)n)=exp(limn→∞1nln[1−cosπ2(n+1)π(n+1)+2π])=exp(limn→∞ln(1−cosπ2(n+1))n+limn→∞ln(2π(n+1))n)=exp(0+0)=1.\begin{aligned} \lim_{n\to \infty}\left[\int_{0}^{1}\left(1+\sin\frac{\pi}{2}t\right)^n dt\right]^\frac{1}{n}&=\lim_{n\to\infty}\left[\int_{0}^{1}\left(1+\sin\frac{\pi}{2}t\right)^n dt\right]^{\frac{1}{n}}\ &=\exp\left(\lim_{n\to\infty}\frac{\ln\left(\int_{0}^{1}\left(1+\sin\frac{\pi}{2}t\right)^n dt\right)}{n}\right)\ &=\exp\left(\lim_{n\to\infty}\frac{1}{n}\ln\left[\frac{1-\cos\frac{\pi}{2}(n+1)}{\pi(n+1)}+\frac{2}{\pi}\right]\right)\ &=\exp\left(\lim_{n\to\infty}\frac{\ln\left(1-\cos\frac{\pi}{2}(n+1)\right)}{n}+\lim_{n\to\infty}\frac{\ln\left(\frac{2}{\pi(n+1)}\right)}{n}\right)\ &=\exp\left(0+0\right)\ &=\boxed{1}. \end{aligned}n→∞lim[∫01(1+sin2πt)ndt]n1=n→∞lim[∫01(1+sin2πt)ndt]n1 =expn→∞limnln(∫01(1+sin2πt)ndt) =exp(n→∞limn1ln[π(n+1)1−cos2π(n+1)+π2]) =expn→∞limnln(1−cos2π(n+1))+n→∞limnln(π(n+1)2) =exp(0+0) =1.
其中,在第三个等号处,我们使用了积分公式∫01sinn(π/2t)dt=1−cos(π/2)(n+1)π(n+1)+2π\int_0^1 \sin^{n} (\pi/2 t) dt= \frac{1-\cos(\pi/2)(n+1)}{\pi(n+1)}+\frac{2}{\pi}∫01sinn(π/2t)dt=π(n+1)1−cos(π/2)(n+1)+π2。在最后一个等号处,我们利用了当n→∞n\to \inftyn→∞时,ln(1−cosπ2(n+1))n\frac{\ln\left(1-\cos\frac{\pi}{2}(n+1)\right)}{n}nln(1−cos2π(n+1))和ln(2π(n+1))n\frac{\ln\left(\frac{2}{\pi(n+1)}\right)}{n}nln(π(n+1)2)的极限均为000。