目录:
在该模块中加载训练好的模型,对测试集的image进行推理。
该模块的书写,是train的简约版,例如你可能需要设置和train相同的batch_size,device,dataloader等信息,但是这次你不需要设置epoch等信息,对模型的参数进行优化等。
书写顺序如下:
写argparse()方法收集需要传递的所有参数,传入main函数中(可选)。
main函数中思路如下:
transforms,dataset,dataloader,batch_size等参数,因为dataloader中要用到。device等,这次你必须要加载train中产生的预训练权重。下以AlexNet中的inference.py为例:
# add path
import os, sys
root_path = os.path.dirname(os.path.dirname(__file__))
project_path = os.path.dirname(__file__)
sys.path.append(project_path)
# add module
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import json
import torch
import numpy as np
from model import AlexNetdef parse_args():"""get your args"""def convert_image(image_path:str = ""):"""transform png to jpg"""def main():# 路径root_path = os.path.dirname(os.path.dirname(__file__))project_path = os.path.dirname(__file__)weight_path = os.path.join(root_path, "weight", "AlexNet_2.pth")image_path = "/home/yingmuzhi/AlexNet/daisy.jpg"# 加载预测图片img = Nonedata_transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])img = Image.open(image_path)print(np.array(img).shape)img = data_transform(img) # 只接受[height, width, channel=3]的图片, 即RGB的jpgimg = torch.unsqueeze(img, dim = 0) # 传入网络需要[batch, channel, height, width]# 加载json文件try:json_file = open(project_path + "/class_indices.json","r")class_indict = json.load(json_file)except Exception as e:print(e)exit(-1)# 测试参数net = AlexNet(num_classes=2)net.load_state_dict(torch.load(weight_path))net.eval() # 关闭dropout层并且不会梯度回传with torch.no_grad():# predict classoutput = net(img)# print(output.shape)output = torch.squeeze(output)# print(output.shape)predict = torch.softmax(output, dim = 0)# print(predict.shape)predict_cla = torch.argmax(predict).numpy()print(class_indict[str(predict_cla)], predict[predict_cla].item())if __name__ == "__main__":args = parse_args()main(args)