于游:一项技术,只有当所有人去参与它,真正去使用它,才有可能去改变我们的生活,如果没人去用,也不可能成为工业革命。ChatGPT 是最快达到 1 亿用户的应用,原因在于它用最简单的人机交互方式,解决了大家原本以为解决不了的问题,解决了普适 AI 的问题。在这个趋势下,我认为它的速度可能会比我们想象中要快。 举个例子,微软用 GPT-4 的模型改进它的搜索引擎,紧接着 Google 发布 Bard,导致微软股价上涨 6%,Google 下跌 8%,三天之内引起了一千亿美金价值的波动。要知道资本市场和金融市场应该是最冷静的,他们看到的问题,可能比我们所有的人看到的都多。微软才占整个搜索市场的 3%,但 Google 的市场占有率是 92%。像这么多人,这么多工程师,这么多资本的流动,坦白来讲,我还没见过同等规模的浪潮,包括当初安卓与 iOS 之争都没有这么剧烈。所以我觉得 GPT 会形成一波巨大的浪潮,而且它的速度可能会远超我们的想象。
沈欣:ChatGPT 给大家最大的震撼是“原来可以用大模型”,这跟以前 AI 的方向有非常大的差异。所以我们未来可能会看到自动驾驶也在新的体系下面,大家也都会做这样的尝试,毕竟这条路被人指出来是通的了,我估计两年之内会看到 GPT 对我们的生活和生产产生全方位的影响。当然这里的前提是算力、电力的成本还要下降,不下降成本还是太高了。
顾钧:我觉得 ChatGPT 这一波的工业革命现在就已经发生了。ChatGPT 给我带来了两大震撼。第一个是它的交互形式非常朴素,就是对话,背后隐含的理念是把人放在 AI 服务的中心。像过去国内做得好的机器视觉,它的应用场景不是以人为核心的,而是希望训练出一个模型来代替人的工作。ChatGPT 完全是一个辅助的角色,但得到了非常好的效果。所以给了我一个比较大的启发:AI 的技术还是应该以人为核心,去服务人。其实我觉得 ChatGPT 已经足够好了,它不是那么完美,但在相当多的任务当中已经超过及格线了。就像公司招聘员工,永远不可能招到全知全能的上帝那样的员工,每个人都有缺陷。 另外一点比较大的震撼,是 OpenAI 做 ChatGPT 的角度,ChatGPT 发的是一个服务,你直接就可以使用。这种工程能力能够迅速散布到整个世界,从而在短时间内服务大量用户。但 Meta、Google 发的还是模型,这真是天壤之别。当别人有一个更低门槛的 AI 技术服务时,你发再多的模型也没有办法撼动别人的优势。
揭光发:ChatGPT 有两种使用形态:一种就是每个人都能用的聊天界面,另外一种就是开放接口。对于使用聊天界面的普通个人来讲,ChatGPT 已经满足了他们日常写作、内容梳理等工作或生活需求,这部分使用形态下,我们可以说“工业革命”正在发生,未来已来。而从使用 Open API 的形态来看,就需要看各个行业变革的时间,可能两年左右可以看到一些行业被改 ChatGPT 改变。
04ChatGPT 目前是对话的交互形态,那在未来,它还将会以什么其它形态出现呢?
沈欣:我们在内部推演的时候就发现,未来会有大量 AI 生成的内容,而人类的时间不足以去消费这些内容。只有魔法才能对抗魔法,最终可能还是由 AI 来阅读这些内容,帮助人类来筛选处理。所以最终以什么样的形态呈现并不重要,关键在于能够筛选出适合我的结果。
宋利:现在业界都往多模态做,但从另一个角度讲,语言是最根本的,它塑造了人类的思维。之前我们总说 NLP 是 AI 皇冠上的明珠,如果能把 NLP 搞定,处理其他问题应该是降维的,现在看来也差不多。所以 ChatGPT 可能外在表现会有各种形式,图像、文字、声音等等,其实核心的东西应该还是语言知识代表的大模型。外在表现会有各种形式,但根本还是语言,语言是人类交流和思考的基本方式,以语言为代表的知识模型是本质。
于游:宋老师说的,我觉得特别对,NLP 在 AI 领域一直都是很困难的一件事情。我们把语言这个事情再泛化一下,可能是知识和文字,我们会发现 ChatGPT 令人震撼的是新发的模型当中,所有的考试基本上超越了 90% 的人类,它基本上达到了人类的知识水平。
沈欣:人类劳动分成体力劳动、情感劳力和脑力劳动,脑力劳动又可分为非逻辑性的黑盒子工作,如艺术创作;和重复性的白盒子工作,如资料整理。由于 AI 会做大量的生产与迭代,且效率非常高,因此这两类的内容生产工作都会被 AI 大量替代。当然,从能耗的角度来看,目前人脑还是比AI划算的,但两到三年后,能耗或许会降到比人脑的功耗更低。 在对于科技从业者的建议方面,前几天我和一家公司的技术管理者交流的时候,我给他的建议是:凡是不用 ChatGPT 的人都应该炒掉,因为作为一个程序员,没有学习新技术的自觉,不知道如何更好地运用工具来提升自己的效率,又如何保持自己的竞争力呢?当然,可以仁慈一点,先搞一次培训告诉大家这个东西是做什么的,可以怎么用,然后过一个月再看,谁不用的就可以考虑炒掉了。
07ChatGPT的火爆,大量资本涌入 AI 领域,未来 AI 赛道的创业前景如何,是否存在泡沫?创业者又该重点投入什么方向?
沈欣:在投资这个赛道一定是有泡沫的,没有泡沫就是计划经济了,就是在大家相互挤泡沫的过程中,才产生了新的创造力。很多人会质疑 AI 如何产生创造力?大家内心对 AI 还有一些内心的坚守,认为 AI 没有创造力,人类才有创造力。但我从 AI 大模型里推断出的结论是:两个异构的、用独立方式训练出来的大语言模型互相碰撞,再引入第三个大模型来在中间做裁判,像主持人一样引导两个 AI 互相聊天,这个时候真的能产生创造力。 未来 AI 真正的创造力在于多个大模型之间产生的社交行为。这个可能是一个比较有意思的一个推论。
某行业架构师:我们之前一直做开源,我们知道开源软件是有相对清晰的许可证的,但大数据模型,它的数据许可证并没有清晰的界定。因此,在使用模型时,存在版权、责任和安全等风险,ChatGPT 所生产内容产生的风险该由谁来承担?说白了 AI 不能背锅,但人能背锅。我们知道新鲜事物一开始都是没有建立起明确边界的,无论是技术、法律、合规,各方都应共同努力,为它建立好边界和防火墙。