在前面已经提到,容器的生命周期可能很短,会被频繁地创建和销毁。那么容器在销毁时,保存在容器中的数据也会被清除。这种结果对用户来说,在某些情况下是不乐意看到的。为了持久化保存容器的数据,kubernetes 引入了 Volume 的概念。
Volume是 Pod 中能够被多个容器访问的共享目录,它被定义在 Pod 上,然后被一个 Pod 里的多个容器挂载到具体的文件目录下,kubernetes通过 Volume 实现同一个Pod中不同容器之间的数据共享以及数据的持久化存储。Volume的生命容器不与 Pod 中单个容器的生命周期相关,当容器终止或者重启时,Volume中的数据也不会丢失。
kubernetes的 Volume 支持多种类型,比较常见的有下面几个:
EmptyDir是最基础的 Volume 类型,一个 EmptyDir 就是Host上的一个空目录。
EmptyDir是在 Pod 被分配到Node时创建的,它的初始内容为空,并且无须指定宿主机上对应的目录文件,因为 kubernetes 会自动分配一个目录,当 Pod 销毁时, EmptyDir中的数据也会被永久删除。 EmptyDir用途如下:
接下来,通过一个容器之间文件共享的案例来使用一下EmptyDir。
在一个 Pod 中准备两个容器nginx和busybox,然后声明一个 Volume 分别挂在到两个容器的目录中,然后 nginx 容器负责向Volume中写日志,busybox中通过命令将日志内容读到控制台。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wtZD2uZ8-1670586837296)(Kubenetes.assets/image-20200413174713773.png)]
创建一个volume-emptydir.yaml
apiVersion: v1
kind: Pod
metadata:name: volume-emptydirnamespace: dev
spec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80volumeMounts: # 将logs-volume挂在到 nginx 容器中,对应的目录为 /var/log/nginx- name: logs-volumemountPath: /var/log/nginx- name: busyboximage: busybox:1.30command: ["/bin/sh","-c","tail -f /logs/access.log"] # 初始命令,动态读取指定文件中内容volumeMounts: # 将logs-volume 挂在到 busybox 容器中,对应的目录为 /logs- name: logs-volumemountPath: /logsvolumes: # 声明volume, name为logs-volume,类型为emptyDir- name: logs-volumeemptyDir: {}
# 创建Pod
[root@k8s-master01 ~]# kubectl create -f volume-emptydir.yaml
pod/volume-emptydir created# 查看pod
[root@k8s-master01 ~]# kubectl get pods volume-emptydir -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE ......
volume-emptydir 2/2 Running 0 97s 10.42.2.9 node1 ......# 通过 podIp 访问nginx
[root@k8s-master01 ~]# curl 10.42.2.9
......# 通过kubectl logs命令查看指定容器的标准输出
[root@k8s-master01 ~]# kubectl logs -f volume-emptydir -n dev -c busybox
10.42.1.0 - - [27/Jun/2021:15:08:54 +0000] "GET / HTTP/1.1" 200 612 "-" "curl/7.29.0" "-"
上节课提到,EmptyDir中数据不会被持久化,它会随着 Pod 的结束而销毁,如果想简单的将数据持久化到主机中,可以选择HostPath。
HostPath就是将 Node 主机中一个实际目录挂在到Pod中,以供容器使用,这样的设计就可以保证 Pod 销毁了,但是数据依据可以存在于 Node 主机上。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gXXTj8Dx-1670587428637)(Kubenetes.assets/image-20200413214031331.png)]
创建一个volume-hostpath.yaml:
apiVersion: v1
kind: Pod
metadata:name: volume-hostpathnamespace: dev
spec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80volumeMounts:- name: logs-volumemountPath: /var/log/nginx- name: busyboximage: busybox:1.30command: ["/bin/sh","-c","tail -f /logs/access.log"]volumeMounts:- name: logs-volumemountPath: /logsvolumes:- name: logs-volumehostPath: path: /root/logstype: DirectoryOrCreate # 目录存在就使用,不存在就先创建后使用
关于 type 的值的一点说明:DirectoryOrCreate 目录存在就使用,不存在就先创建后使用Directory 目录必须存在FileOrCreate 文件存在就使用,不存在就先创建后使用File 文件必须存在 Socket unix套接字必须存在CharDevice 字符设备必须存在BlockDevice 块设备必须存在
# 创建Pod
[root@k8s-master01 ~]# kubectl create -f volume-hostpath.yaml
pod/volume-hostpath created# 查看Pod
[root@k8s-master01 ~]# kubectl get pods volume-hostpath -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE ......
pod-volume-hostpath 2/2 Running 0 16s 10.42.2.10 node1 ......#访问nginx
[root@k8s-master01 ~]# curl 10.42.2.10# 接下来就可以去 host 的/root/logs目录下查看存储的文件了
### 注意: 下面的操作需要到 Pod 所在的节点运行(案例中是node1)
[root@node1 ~]# ls /root/logs/
access.log error.log# 同样的道理,如果在此目录下创建一个文件,到容器中也是可以看到的
HostPath可以解决数据持久化的问题,但是一旦 Node 节点故障了,Pod如果转移到了别的节点,又会出现问题了,此时需要准备单独的网络存储系统,比较常用的用NFS、CIFS。
NFS是一个网络文件存储系统,可以搭建一台 NFS 服务器,然后将 Pod 中的存储直接连接到NFS系统上,这样的话,无论 Pod 在节点上怎么转移,只要 Node 跟NFS的对接没问题,数据就可以成功访问。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-f1a0R3C0-1670587428644)(Kubenetes.assets/image-20200413215133559.png)]
1)首先要准备 nfs 的服务器,这里为了简单,直接是 master 节点做nfs服务器
# 在 nfs 上安装nfs服务
[root@nfs ~]# yum install nfs-utils -y# 准备一个共享目录
[root@nfs ~]# mkdir /root/data/nfs -pv# 将共享目录以读写权限暴露给192.168.5.0/24网段中的所有主机
[root@nfs ~]# vim /etc/exports
[root@nfs ~]# more /etc/exports
/root/data/nfs 192.168.5.0/24(rw,no_root_squash)# 启动 nfs 服务
[root@nfs ~]# systemctl restart nfs
2)接下来,要在的每个 node 节点上都安装下nfs,这样的目的是为了 node 节点可以驱动nfs设备
# 在 node 上安装nfs服务,注意不需要启动
[root@k8s-master01 ~]# yum install nfs-utils -y
3)接下来,就可以编写 pod 的配置文件了,创建volume-nfs.yaml
apiVersion: v1
kind: Pod
metadata:name: volume-nfsnamespace: dev
spec:containers:- name: nginximage: nginx:1.17.1ports:- containerPort: 80volumeMounts:- name: logs-volumemountPath: /var/log/nginx- name: busyboximage: busybox:1.30command: ["/bin/sh","-c","tail -f /logs/access.log"] volumeMounts:- name: logs-volumemountPath: /logsvolumes:- name: logs-volumenfs:server: 192.168.5.6 #nfs服务器地址path: /root/data/nfs #共享文件路径
4)最后,运行下pod,观察结果
# 创建pod
[root@k8s-master01 ~]# kubectl create -f volume-nfs.yaml
pod/volume-nfs created# 查看pod
[root@k8s-master01 ~]# kubectl get pods volume-nfs -n dev
NAME READY STATUS RESTARTS AGE
volume-nfs 2/2 Running 0 2m9s# 查看 nfs 服务器上的共享目录,发现已经有文件了
[root@k8s-master01 ~]# ls /root/data/
access.log error.log
前面已经学习了使用 NFS 提供存储,此时就要求用户会搭建 NFS 系统,并且会在 yaml 配置nfs。由于 kubernetes 支持的存储系统有很多,要求客户全都掌握,显然不现实。为了能够屏蔽底层存储实现的细节,方便用户使用, kubernetes引入 PV 和PVC两种资源对象。
PV(Persistent Volume)是持久化卷的意思,是对底层的共享存储的一种抽象。一般情况下 PV 由kubernetes管理员进行创建和配置,它与底层具体的共享存储技术有关,并通过插件完成与共享存储的对接。
PVC(Persistent Volume Claim)是持久卷声明的意思,是用户对于存储需求的一种声明。换句话说,PVC其实就是用户向 kubernetes 系统发出的一种资源需求申请。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EGBFTnb4-1670587428646)(Kubenetes.assets/image-20200514194111567.png)]
使用了 PV 和PVC之后,工作可以得到进一步的细分:
PV是存储资源的抽象,下面是资源清单文件:
apiVersion: v1
kind: PersistentVolume
metadata:name: pv2
spec:nfs: # 存储类型,与底层真正存储对应capacity: # 存储能力,目前只支持存储空间的设置storage: 2GiaccessModes: # 访问模式storageClassName: # 存储类别persistentVolumeReclaimPolicy: # 回收策略
PV 的关键配置参数说明:
存储类型
底层实际存储的类型,kubernetes支持多种存储类型,每种存储类型的配置都有所差异
存储能力(capacity)
目前只支持存储空间的设置( storage=1Gi ),不过未来可能会加入IOPS、吞吐量等指标的配置
访问模式(accessModes)
用于描述用户应用对存储资源的访问权限,访问权限包括下面几种方式:
需要注意的是,底层不同的存储类型可能支持的访问模式不同
回收策略(persistentVolumeReclaimPolicy)
当 PV 不再被使用了之后,对其的处理方式。目前支持三种策略:
需要注意的是,底层不同的存储类型可能支持的回收策略不同
存储类别
PV可以通过 storageClassName 参数指定一个存储类别
状态(status)
一个 PV 的生命周期中,可能会处于4中不同的阶段:
实验
使用 NFS 作为存储,来演示 PV 的使用,创建3个PV,对应 NFS 中的3个暴露的路径。
# 创建目录
[root@nfs ~]# mkdir /root/data/{pv1,pv2,pv3} -pv# 暴露服务
[root@nfs ~]# more /etc/exports
/root/data/pv1 192.168.5.0/24(rw,no_root_squash)
/root/data/pv2 192.168.5.0/24(rw,no_root_squash)
/root/data/pv3 192.168.5.0/24(rw,no_root_squash)# 重启服务
[root@nfs ~]# systemctl restart nfs
apiVersion: v1
kind: PersistentVolume
metadata:name: pv1
spec:capacity: storage: 1GiaccessModes:- ReadWriteManypersistentVolumeReclaimPolicy: Retainnfs:path: /root/data/pv1server: 192.168.5.6---apiVersion: v1
kind: PersistentVolume
metadata:name: pv2
spec:capacity: storage: 2GiaccessModes:- ReadWriteManypersistentVolumeReclaimPolicy: Retainnfs:path: /root/data/pv2server: 192.168.5.6---apiVersion: v1
kind: PersistentVolume
metadata:name: pv3
spec:capacity: storage: 3GiaccessModes:- ReadWriteManypersistentVolumeReclaimPolicy: Retainnfs:path: /root/data/pv3server: 192.168.5.6
# 创建 pv
[root@k8s-master01 ~]# kubectl create -f pv.yaml
persistentvolume/pv1 created
persistentvolume/pv2 created
persistentvolume/pv3 created# 查看pv
[root@k8s-master01 ~]# kubectl get pv -o wide
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS AGE VOLUMEMODE
pv1 1Gi RWX Retain Available 10s Filesystem
pv2 2Gi RWX Retain Available 10s Filesystem
pv3 3Gi RWX Retain Available 9s Filesystem
PVC是资源的申请,用来声明对存储空间、访问模式、存储类别需求信息。下面是资源清单文件:
apiVersion: v1
kind: PersistentVolumeClaim
metadata:name: pvcnamespace: dev
spec:accessModes: # 访问模式selector: # 采用标签对 PV 选择storageClassName: # 存储类别resources: # 请求空间requests:storage: 5Gi
PVC 的关键配置参数说明:
用于描述用户应用对存储资源的访问权限
选择条件(selector)
通过Label Selector的设置,可使 PVC 对于系统中己存在的PV进行筛选
存储类别(storageClassName)
PVC在定义时可以设定需要的后端存储的类别,只有设置了该 class 的pv才能被系统选出
资源请求(Resources )
描述对存储资源的请求
实验
apiVersion: v1
kind: PersistentVolumeClaim
metadata:name: pvc1namespace: dev
spec:accessModes: - ReadWriteManyresources:requests:storage: 1Gi
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:name: pvc2namespace: dev
spec:accessModes: - ReadWriteManyresources:requests:storage: 1Gi
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:name: pvc3namespace: dev
spec:accessModes: - ReadWriteManyresources:requests:storage: 1Gi
# 创建pvc
[root@k8s-master01 ~]# kubectl create -f pvc.yaml
persistentvolumeclaim/pvc1 created
persistentvolumeclaim/pvc2 created
persistentvolumeclaim/pvc3 created# 查看pvc
[root@k8s-master01 ~]# kubectl get pvc -n dev -o wide
NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE VOLUMEMODE
pvc1 Bound pv1 1Gi RWX 15s Filesystem
pvc2 Bound pv2 2Gi RWX 15s Filesystem
pvc3 Bound pv3 3Gi RWX 15s Filesystem# 查看pv
[root@k8s-master01 ~]# kubectl get pv -o wide
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM AGE VOLUMEMODE
pv1 1Gi RWx Retain Bound dev/pvc1 3h37m Filesystem
pv2 2Gi RWX Retain Bound dev/pvc2 3h37m Filesystem
pv3 3Gi RWX Retain Bound dev/pvc3 3h37m Filesystem
apiVersion: v1
kind: Pod
metadata:name: pod1namespace: dev
spec:containers:- name: busyboximage: busybox:1.30command: ["/bin/sh","-c","while true;do echo pod1 >> /root/out.txt; sleep 10; done;"]volumeMounts:- name: volumemountPath: /root/volumes:- name: volumepersistentVolumeClaim:claimName: pvc1readOnly: false
---
apiVersion: v1
kind: Pod
metadata:name: pod2namespace: dev
spec:containers:- name: busyboximage: busybox:1.30command: ["/bin/sh","-c","while true;do echo pod2 >> /root/out.txt; sleep 10; done;"]volumeMounts:- name: volumemountPath: /root/volumes:- name: volumepersistentVolumeClaim:claimName: pvc2readOnly: false
# 创建pod
[root@k8s-master01 ~]# kubectl create -f pods.yaml
pod/pod1 created
pod/pod2 created# 查看pod
[root@k8s-master01 ~]# kubectl get pods -n dev -o wide
NAME READY STATUS RESTARTS AGE IP NODE
pod1 1/1 Running 0 14s 10.244.1.69 node1
pod2 1/1 Running 0 14s 10.244.1.70 node1 # 查看pvc
[root@k8s-master01 ~]# kubectl get pvc -n dev -o wide
NAME STATUS VOLUME CAPACITY ACCESS MODES AGE VOLUMEMODE
pvc1 Bound pv1 1Gi RWX 94m Filesystem
pvc2 Bound pv2 2Gi RWX 94m Filesystem
pvc3 Bound pv3 3Gi RWX 94m Filesystem# 查看pv
[root@k8s-master01 ~]# kubectl get pv -n dev -o wide
NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM AGE VOLUMEMODE
pv1 1Gi RWX Retain Bound dev/pvc1 5h11m Filesystem
pv2 2Gi RWX Retain Bound dev/pvc2 5h11m Filesystem
pv3 3Gi RWX Retain Bound dev/pvc3 5h11m Filesystem# 查看 nfs 中的文件存储
[root@nfs ~]# more /root/data/pv1/out.txt
node1
node1
[root@nfs ~]# more /root/data/pv2/out.txt
node2
node2
PVC和 PV 是一一对应的,PV和 PVC 之间的相互作用遵循以下生命周期:
资源供应:管理员手动创建底层存储和PV
资源绑定:用户创建PVC,kubernetes负责根据 PVC 的声明去寻找PV,并绑定
在用户定义好 PVC 之后,系统将根据 PVC 对存储资源的请求在已存在的PV中选择一个满足条件的
PV一旦绑定到某个 PVC 上,就会被这个 PVC 独占,不能再与其他 PVC 进行绑定了
资源使用:用户可在 pod 中像volume一样使用pvc
Pod使用 Volume 的定义,将 PVC 挂载到容器内的某个路径进行使用。
资源释放:用户删除 pvc 来释放pv
当存储资源使用完毕后,用户可以删除PVC,与该 PVC 绑定的PV将会被标记为“已释放”,但还不能立刻与其他 PVC 进行绑定。通过之前 PVC 写入的数据可能还被留在存储设备上,只有在清除之后该 PV 才能再次使用。
资源回收:kubernetes根据 pv 设置的回收策略进行资源的回收
对于PV,管理员可以设定回收策略,用于设置与之绑定的 PVC 释放资源之后如何处理遗留数据的问题。只有 PV 的存储空间完成回收,才能供新的 PVC 绑定和使用
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4pXMcpeQ-1670587428648)(Kubenetes.assets/image-20200515002806726.png)]
ConfigMap是一种比较特殊的存储卷,它的主要作用是用来存储配置信息的。
创建configmap.yaml,内容如下:
apiVersion: v1
kind: ConfigMap
metadata:name: configmapnamespace: dev
data:info: |username:adminpassword:123456
接下来,使用此配置文件创建configmap
# 创建configmap
[root@k8s-master01 ~]# kubectl create -f configmap.yaml
configmap/configmap created# 查看 configmap 详情
[root@k8s-master01 ~]# kubectl describe cm configmap -n dev
Name: configmap
Namespace: dev
Labels:
Annotations: Data
====
info:
----
username:admin
password:123456Events:
接下来创建一个pod-configmap.yaml,将上面创建的 configmap 挂载进去
apiVersion: v1
kind: Pod
metadata:name: pod-configmapnamespace: dev
spec:containers:- name: nginximage: nginx:1.17.1volumeMounts: # 将 configmap 挂载到目录- name: configmountPath: /configmap/configvolumes: # 引用configmap- name: configconfigMap:name: configmap
# 创建pod
[root@k8s-master01 ~]# kubectl create -f pod-configmap.yaml
pod/pod-configmap created# 查看pod
[root@k8s-master01 ~]# kubectl get pod pod-configmap -n dev
NAME READY STATUS RESTARTS AGE
pod-configmap 1/1 Running 0 6s#进入容器
[root@k8s-master01 ~]# kubectl exec -it pod-configmap -n dev /bin/sh
# cd /configmap/config/
# ls
info
# more info
username:admin
password:123456# 可以看到映射已经成功,每个 configmap 都映射成了一个目录
# key--->文件 value---->文件中的内容
# 此时如果更新 configmap 的内容, 容器中的值也会动态更新
在 kubernetes 中,还存在一种和 ConfigMap 非常类似的对象,称为 Secret 对象。它主要用于存储敏感信息,例如密码、秘钥、证书等等。
[root@k8s-master01 ~]# echo -n 'admin' | base64 #准备username
YWRtaW4=
[root@k8s-master01 ~]# echo -n '123456' | base64 #准备password
MTIzNDU2
apiVersion: v1
kind: Secret
metadata:name: secretnamespace: dev
type: Opaque
data:username: YWRtaW4=password: MTIzNDU2
# 创建secret
[root@k8s-master01 ~]# kubectl create -f secret.yaml
secret/secret created# 查看 secret 详情
[root@k8s-master01 ~]# kubectl describe secret secret -n dev
Name: secret
Namespace: dev
Labels:
Annotations:
Type: Opaque
Data
====
password: 6 bytes
username: 5 bytes
apiVersion: v1
kind: Pod
metadata:name: pod-secretnamespace: dev
spec:containers:- name: nginximage: nginx:1.17.1volumeMounts: # 将 secret 挂载到目录- name: configmountPath: /secret/configvolumes:- name: configsecret:secretName: secret
# 创建pod
[root@k8s-master01 ~]# kubectl create -f pod-secret.yaml
pod/pod-secret created# 查看pod
[root@k8s-master01 ~]# kubectl get pod pod-secret -n dev
NAME READY STATUS RESTARTS AGE
pod-secret 1/1 Running 0 2m28s# 进入容器,查看 secret 信息,发现已经自动解码了
[root@k8s-master01 ~]# kubectl exec -it pod-secret /bin/sh -n dev
/ # ls /secret/config/
password username
/ # more /secret/config/username
admin
/ # more /secret/config/password
123456
至此,已经实现了利用 secret 实现了信息的编码。
Kubernetes作为一个分布式集群的管理工具,保证集群的安全性是其一个重要的任务。所谓的安全性其实就是保证对 Kubernetes 的各种客户端进行认证和鉴权操作。
客户端
在 Kubernetes 集群中,客户端通常有两类:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-aSVrY1xd-1670587428651)(Kubenetes.assets/image-20200520102949189.png)]
认证、授权与准入控制
ApiServer是访问及管理资源对象的唯一入口。任何一个请求访问ApiServer,都要经过下面三个流程:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-fNaa3Fqj-1670587428656)(Kubenetes.assets/image-20200520103942580.png)]
Kubernetes集群安全的最关键点在于如何识别并认证客户端身份,它提供了3种客户端身份认证方式:
HTTP Base认证:通过用户名+密码的方式认证
这种认证方式是把“用户名:密码”用BASE64算法进行编码后的字符串放在 HTTP 请求中的Header Authorization域里发送给服务端。服务端收到后进行解码,获取用户名及密码,然后进行用户身份认证的过程。
HTTP Token认证:通过一个 Token 来识别合法用户
这种认证方式是用一个很长的难以被模仿的字符串--Token来表明客户身份的一种方式。每个 Token 对应一个用户名,当客户端发起 API 调用请求时,需要在HTTP Header里放入Token,API Server接到 Token 后会跟服务器中保存的token进行比对,然后进行用户身份认证的过程。
HTTPS证书认证:基于 CA 根证书签名的双向数字证书认证方式
这种认证方式是安全性最高的一种方式,但是同时也是操作起来最麻烦的一种方式。
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bBzu9cMj-1670587428657)(Kubenetes.assets/image-20200518211037434.png)]
HTTPS认证大体分为3个过程:
证书申请和下发
HTTPS通信双方的服务器向 CA 机构申请证书,CA机构下发根证书、服务端证书及私钥给申请者
客户端和服务端的双向认证
1> 客户端向服务器端发起请求,服务端下发自己的证书给客户端,客户端接收到证书后,通过私钥解密证书,在证书中获得服务端的公钥,客户端利用服务器端的公钥认证证书中的信息,如果一致,则认可这个服务器2> 客户端发送自己的证书给服务器端,服务端接收到证书后,通过私钥解密证书,在证书中获得客户端的公钥,并用该公钥认证证书信息,确认客户端是否合法
服务器端和客户端进行通信
服务器端和客户端协商好加密方案后,客户端会产生一个随机的秘钥并加密,然后发送到服务器端。服务器端接收这个秘钥后,双方接下来通信的所有内容都通过该随机秘钥加密
注意: Kubernetes允许同时配置多种认证方式,只要其中任意一个方式认证通过即可
授权发生在认证成功之后,通过认证就可以知道请求用户是谁, 然后 Kubernetes 会根据事先定义的授权策略来决定用户是否有权限访问,这个过程就称为授权。
每个发送到 ApiServer 的请求都带上了用户和资源的信息:比如发送请求的用户、请求的路径、请求的动作等,授权就是根据这些信息和授权策略进行比较,如果符合策略,则认为授权通过,否则会返回错误。
API Server目前支持以下几种授权策略:
RBAC(Role-Based Access Control) 基于角色的访问控制,主要是在描述一件事情:给哪些对象授予了哪些权限
其中涉及到了下面几个概念:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0UKSCRQG-1670587428658)(Kubenetes.assets/image-20200519181209566.png)]
RBAC引入了4个顶级资源对象:
Role、ClusterRole
一个角色就是一组权限的集合,这里的权限都是许可形式的(白名单)。
# Role只能对命名空间内的资源进行授权,需要指定nameapce
kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:namespace: devname: authorization-role
rules:
- apiGroups: [""] # 支持的 API 组列表,"" 空字符串,表示核心 API 群resources: ["pods"] # 支持的资源对象列表verbs: ["get", "watch", "list"] # 允许的对资源对象的操作方法列表
# ClusterRole可以对集群范围内资源、跨 namespaces 的范围资源、非资源类型进行授权
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:name: authorization-clusterrole
rules:
- apiGroups: [""]resources: ["pods"]verbs: ["get", "watch", "list"]
需要详细说明的是,rules中的参数:
apiGroups: 支持的 API 组列表
"","apps", "autoscaling", "batch"
resources:支持的资源对象列表
"services", "endpoints", "pods","secrets","configmaps","crontabs","deployments","jobs",
"nodes","rolebindings","clusterroles","daemonsets","replicasets","statefulsets",
"horizontalpodautoscalers","replicationcontrollers","cronjobs"
verbs:对资源对象的操作方法列表
"get", "list", "watch", "create", "update", "patch", "delete", "exec"
RoleBinding、ClusterRoleBinding
角色绑定用来把一个角色绑定到一个目标对象上,绑定目标可以是User、Group或者ServiceAccount。
# RoleBinding可以将同一 namespace 中的subject绑定到某个 Role 下,则此 subject 即具有该Role定义的权限
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:name: authorization-role-bindingnamespace: dev
subjects:
- kind: Username: heimaapiGroup: rbac.authorization.k8s.io
roleRef:kind: Rolename: authorization-roleapiGroup: rbac.authorization.k8s.io
# ClusterRoleBinding在整个集群级别和所有 namespaces 将特定的subject与 ClusterRole 绑定,授予权限
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:name: authorization-clusterrole-binding
subjects:
- kind: Username: heimaapiGroup: rbac.authorization.k8s.io
roleRef:kind: ClusterRolename: authorization-clusterroleapiGroup: rbac.authorization.k8s.io
RoleBinding引用 ClusterRole 进行授权
RoleBinding可以引用ClusterRole,对属于同一命名空间内 ClusterRole 定义的资源主体进行授权。
一种很常用的做法就是,集群管理员为集群范围预定义好一组角色(ClusterRole),然后在多个命名空间中重复使用这些ClusterRole。这样可以大幅提高授权管理工作效率,也使得各个命名空间下的基础性授权规则与使用体验保持一致。
# 虽然authorization-clusterrole是一个集群角色,但是因为使用了RoleBinding
# 所以 heima 只能读取dev命名空间中的资源
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:name: authorization-role-binding-nsnamespace: dev
subjects:
- kind: Username: heimaapiGroup: rbac.authorization.k8s.io
roleRef:kind: ClusterRolename: authorization-clusterroleapiGroup: rbac.authorization.k8s.io
实战:创建一个只能管理 dev 空间下Pods资源的账号
# 1) 创建证书
[root@k8s-master01 pki]# cd /etc/kubernetes/pki/
[root@k8s-master01 pki]# (umask 077;openssl genrsa -out devman.key 2048)# 2) 用 apiserver 的证书去签署
# 2-1) 签名申请,申请的用户是devman,组是devgroup
[root@k8s-master01 pki]# openssl req -new -key devman.key -out devman.csr -subj "/CN=devman/O=devgroup"
# 2-2) 签署证书
[root@k8s-master01 pki]# openssl x509 -req -in devman.csr -CA ca.crt -CAkey ca.key -CAcreateserial -out devman.crt -days 3650# 3) 设置集群、用户、上下文信息
[root@k8s-master01 pki]# kubectl config set-cluster kubernetes --embed-certs=true --certificate-authority=/etc/kubernetes/pki/ca.crt --server=https://192.168.109.100:6443[root@k8s-master01 pki]# kubectl config set-credentials devman --embed-certs=true --client-certificate=/etc/kubernetes/pki/devman.crt --client-key=/etc/kubernetes/pki/devman.key[root@k8s-master01 pki]# kubectl config set-context devman@kubernetes --cluster=kubernetes --user=devman# 切换账户到devman
[root@k8s-master01 pki]# kubectl config use-context devman@kubernetes
Switched to context "devman@kubernetes".# 查看 dev 下pod,发现没有权限
[root@k8s-master01 pki]# kubectl get pods -n dev
Error from server (Forbidden): pods is forbidden: User "devman" cannot list resource "pods" in API group "" in the namespace "dev"# 切换到 admin 账户
[root@k8s-master01 pki]# kubectl config use-context kubernetes-admin@kubernetes
Switched to context "kubernetes-admin@kubernetes".
2) 创建 Role 和RoleBinding,为 devman 用户授权
kind: Role
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:namespace: devname: dev-role
rules:
- apiGroups: [""]resources: ["pods"]verbs: ["get", "watch", "list"]---kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1beta1
metadata:name: authorization-role-bindingnamespace: dev
subjects:
- kind: Username: devmanapiGroup: rbac.authorization.k8s.io
roleRef:kind: Rolename: dev-roleapiGroup: rbac.authorization.k8s.io
[root@k8s-master01 pki]# kubectl create -f dev-role.yaml
role.rbac.authorization.k8s.io/dev-role created
rolebinding.rbac.authorization.k8s.io/authorization-role-binding created
# 切换账户到devman
[root@k8s-master01 pki]# kubectl config use-context devman@kubernetes
Switched to context "devman@kubernetes".# 再次查看
[root@k8s-master01 pki]# kubectl get pods -n dev
NAME READY STATUS RESTARTS AGE
nginx-deployment-66cb59b984-8wp2k 1/1 Running 0 4d1h
nginx-deployment-66cb59b984-dc46j 1/1 Running 0 4d1h
nginx-deployment-66cb59b984-thfck 1/1 Running 0 4d1h# 为了不影响后面的学习,切回 admin 账户
[root@k8s-master01 pki]# kubectl config use-context kubernetes-admin@kubernetes
Switched to context "kubernetes-admin@kubernetes".
通过了前面的认证和授权之后,还需要经过准入控制处理通过之后,apiserver才会处理这个请求。
准入控制是一个可配置的控制器列表,可以通过在Api-Server上通过命令行设置选择执行哪些准入控制器:
--admission-control=NamespaceLifecycle,LimitRanger,ServiceAccount,PersistentVolumeLabel,DefaultStorageClass,ResourceQuota,DefaultTolerationSeconds
只有当所有的准入控制器都检查通过之后,apiserver才执行该请求,否则返回拒绝。
当前可配置的Admission Control准入控制如下:
之前在 kubernetes 中完成的所有操作都是通过命令行工具kubectl完成的。其实,为了提供更丰富的用户体验,kubernetes还开发了一个基于 web 的用户界面(Dashboard)。用户可以使用 Dashboard 部署容器化的应用,还可以监控应用的状态,执行故障排查以及管理 kubernetes 中各种资源。
# 下载yaml
[root@k8s-master01 ~]# wget https://raw.githubusercontent.com/kubernetes/dashboard/v2.0.0/aio/deploy/recommended.yaml# 修改kubernetes-dashboard的 Service 类型
kind: Service
apiVersion: v1
metadata:labels:k8s-app: kubernetes-dashboardname: kubernetes-dashboardnamespace: kubernetes-dashboard
spec:type: NodePort # 新增ports:- port: 443targetPort: 8443nodePort: 30009 # 新增selector:k8s-app: kubernetes-dashboard# 部署
[root@k8s-master01 ~]# kubectl create -f recommended.yaml# 查看 namespace 下的kubernetes-dashboard下的资源
[root@k8s-master01 ~]# kubectl get pod,svc -n kubernetes-dashboard
NAME READY STATUS RESTARTS AGE
pod/dashboard-metrics-scraper-c79c65bb7-zwfvw 1/1 Running 0 111s
pod/kubernetes-dashboard-56484d4c5-z95z5 1/1 Running 0 111sNAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/dashboard-metrics-scraper ClusterIP 10.96.89.218 8000/TCP 111s
service/kubernetes-dashboard NodePort 10.104.178.171 443:30009/TCP 111s
2)创建访问账户,获取token
# 创建账号
[root@k8s-master01-1 ~]# kubectl create serviceaccount dashboard-admin -n kubernetes-dashboard# 授权
[root@k8s-master01-1 ~]# kubectl create clusterrolebinding dashboard-admin-rb --clusterrole=cluster-admin --serviceaccount=kubernetes-dashboard:dashboard-admin# 获取账号token
[root@k8s-master01 ~]# kubectl get secrets -n kubernetes-dashboard | grep dashboard-admin
dashboard-admin-token-xbqhh kubernetes.io/service-account-token 3 2m35s[root@k8s-master01 ~]# kubectl describe secrets dashboard-admin-token-xbqhh -n kubernetes-dashboard
Name: dashboard-admin-token-xbqhh
Namespace: kubernetes-dashboard
Labels:
Annotations: kubernetes.io/service-account.name: dashboard-adminkubernetes.io/service-account.uid: 95d84d80-be7a-4d10-a2e0-68f90222d039Type: kubernetes.io/service-account-tokenData
====
namespace: 20 bytes
token: eyJhbGciOiJSUzI1NiIsImtpZCI6ImJrYkF4bW5XcDhWcmNGUGJtek5NODFuSXl1aWptMmU2M3o4LTY5a2FKS2cifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlcm5ldGVzLWRhc2hib2FyZCIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJkYXNoYm9hcmQtYWRtaW4tdG9rZW4teGJxaGgiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiZGFzaGJvYXJkLWFkbWluIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQudWlkIjoiOTVkODRkODAtYmU3YS00ZDEwLWEyZTAtNjhmOTAyMjJkMDM5Iiwic3ViIjoic3lzdGVtOnNlcnZpY2VhY2NvdW50Omt1YmVybmV0ZXMtZGFzaGJvYXJkOmRhc2hib2FyZC1hZG1pbiJ9.NAl7e8ZfWWdDoPxkqzJzTB46sK9E8iuJYnUI9vnBaY3Jts7T1g1msjsBnbxzQSYgAG--cV0WYxjndzJY_UWCwaGPrQrt_GunxmOK9AUnzURqm55GR2RXIZtjsWVP2EBatsDgHRmuUbQvTFOvdJB4x3nXcYLN2opAaMqg3rnU2rr-A8zCrIuX_eca12wIp_QiuP3SF-tzpdLpsyRfegTJZl6YnSGyaVkC9id-cxZRb307qdCfXPfCHR_2rt5FVfxARgg_C0e3eFHaaYQO7CitxsnIoIXpOFNAR8aUrmopJyODQIPqBWUehb7FhlU1DCduHnIIXVC_UICZ-MKYewBDLw
ca.crt: 1025 bytes
3)通过浏览器访问 Dashboard 的UI
在登录页面上输入上面的token
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-f0DVq4fQ-1670587428659)(Kubenetes.assets/image-20200520144548997.png)]
出现下面的页面代表成功
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Gz8VKI4s-1670587428662)(Kubenetes.assets/image-20200520144959353.png)]
本章节以 Deployment 为例演示DashBoard的使用
查看
选择指定的命名空间dev
,然后点击Deployments
,查看 dev 空间下的所有deployment
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Kbyj2QxO-1670587428666)(Kubenetes.assets/image-20200520154628679.png)]
扩缩容
在Deployment
上点击规模
,然后指定目标副本数量
,点击确定
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-AGIDZnce-1670587428670)(Kubenetes.assets/image-20200520162605102.png)]
编辑
在Deployment
上点击编辑
,然后修改yaml文件
,点击确定
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-b93GKggu-1670587428671)(Kubenetes.assets/image-20200520163253644.png)]
查看Pod
点击Pods
, 查看 pods 列表
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9cNggvWu-1670587428672)(Kubenetes.assets/image-20200520163552110.png)]
操作Pod
选中某个Pod,可以对其执行日志(logs)、进入执行(exec)、编辑、删除操作
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-r3cnb09M-1670587428673)(Kubenetes.assets/image-20200520163832827.png)]
Dashboard提供了 kubectl 的绝大部分功能,这里不再一一演示